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Introduction 

An engine or motor is a machine designed to convert 

one form of energy into mechanical energy1. Heat 

engines burn a fuel; electric motors convert electrical 

energy; pneumatic motors compressed air; then the 

energy conversion from those engines is used to do 

the work. The same principle applies in biological 

systems; for example, molecular motors (e.g. myosins 

in muscles) use chemical energy to create forces and 

motion1. In statistics, I would say that there are two 

mathematical engines which are the driving forces 

underneath almost all statistical methods/models: 

“regression” and “correlation”.  

There are varieties of regression and correlation. But 

we will focus on the classic engines of all, the “Linear 

regression” and the “Pearson’s correlation”. It is 

important to understand the mechanism of these 

engines because they are the foundations or driving 

forces of all other types of regression and correlation 

and used as basis for several other statistical models. 

We will take a close look at the development of linear 

regression model, the steps in derivation of Pearson’s 

correlation coefficient, and the mathematical linkage 

between the two statistical terms. 

What are Correlation and Regression? 

The two statistics are both similar and different. 

Regarding the meaning, correlation determines co-

relationship or association of two variables while 

regression describes how an independent variable is 

numerically related to the dependent variable2. 

Correlation quantifies the degree to which two 

variables (say, x and y) are related. Regression 

identifies the “best” equation that predicts y from x. 

We can say that correlation does not distinguish the 

dependent variable (y) and Independent variable (x) 

but regression tends to do so3-4.  

Both statistics are based on linear relationship. 

Correlation assumes that the association is linear, 

that one variable increases or decreases a fixed 

amount for a unit increase or decrease in the other. 

Regression, on the other hand, involves estimating 

the best straight line to summarize the association 

between the variables. Therefore correlation 

coefficient infers the extent to which two variables 

are associated with each other while regression 

coefficient estimates the impact of a unit change in 

the variable (x) on the variable (y)2,4.  

A Brief History 

The name “Pearson’s correlation” leads to believe that 

Karl Pearson (1857-1936) developed this statistical 

measure himself. Although he is the one who made 

correlation as currently known today, but history 

went back before his time.  

Sir Francis Galton (1822-1911) is commonly regarded 

as the founder of the statistical techniques of 

correlation and linear regression5-7. Galton, a cousin 

of Charles Darwin (1809-1882) was a distinguish 

scientist in biology, psychology and applied statistics. 

His works on genetics and heredity provided the 

initial inspiration that led to regression and 

correlation5,6. As Galton's biographer, Pearson 

described interesting story of the discovery of the 

regression analysis. In 1875, Galton had distributed 

packets of sweet pea seeds to seven friends to harvest 

the seeds and return the next generations to him. 

Each friend received seeds of uniform weight but 

there was substantial variation across different 

packets. Galton then plotted the weights of the 

daughter seeds against the weights of the mother 

seeds, and he discovered a straight line relationship 

with positive slope of the two weights5.  

But Pearson also credited Auguste Bravais (1811-

1863), a professor of astronomy and physics, as a 

founder of initial mathematical formulae for 

regression and correlation concepts. As noted by 

Pearson, Bravais wrote about "mathematical analysis 

on the probability of errors of a point" which is the 

fundamental theorems of the correlational calculus7.  
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Some argued that regression and correlation went 

even further back to the legendary mathematician 

Carl Friedrich Gauss (1777-1855) and Adrien-Marie 

Legendre (1752-1833) who independently discovered 

the method of “least squares”, the essential feature of 

linear regression8.  

Basics of Regression 

A simple way to explore relationships between the 

two variables is to construct a scatter diagram with 

one variable on the vertical scale and the other on the 

horizontal scale. In regression model the "dependent 

variable” is usually plotted on the vertical axis while 

the "independent variable" on the horizontal axis, or 

baseline4. The main purpose of regression analysis is 

to obtain an equation explaining the relationship 

between variables. Such equation is frequently used 

to predict the future (or unknown) value of the 

dependent variable, or to understand which factors 

(independent variables) cause or associate with an 

outcome (dependent variable)8.  

Back to the history of regression, in studying data on 

relative sizes of parents and their offspring in various 

species of plants and animals, Galton noted that a 

larger-than-average parent tends to produce a larger-

than-average child, but the child is likely to be less 

large than the parent in terms of its relative position 

within its own generation9. Galton termed this 

phenomenon a “regression towards mediocrity”, 

which in modern terms is a “regression to the mean”. 

Regression to the mean can be expected in natural 

settings, for example, relative to others in the same 

class, your final exam score could be expected to be 

less good or bad than your midterm score9. However, 

the term “regression” later evolved and changed to 

the concept of slope determining the relationship 

between the independent variable(s) and dependent 

variable. 

Regression is a statistical technique for estimating 

the change in the dependent variable (y) due to the 

change in one or more independent variables (x). The 

decision of which variable is dependent or 

independent variable must be pre-determined as the 

best-fit line will be different if you swap the two3. The 

simple regression line of y on x is expressed as:  

 where, 0 = constant (intercept), 1 = 

regression coefficient (slope). The 0 and 1 are the 

two regression parameters in the equation. As shown 

in the hypothetical scenario (steps of a walking baby), 

in figure 1 (a); at Day 0 (baseline) a baby is able to 

walk 5 steps, and then 8, 11, 14 steps on Days 1, 2, 

and 3, respectively. This is one sample with a perfect 

linear relationship; the linear regression equation 

here is where 0 = 5 steps (intercept: 

when x=0) and 1 = 3 (slope when x changes 1 unit-

day, y changes 3 unit-steps). So, if this linear pattern 

holds, you can expect that the baby will walk 17 steps 

on Day 4.   

But when the researcher collects data on walking 

steps from many babies with “not so perfect” linear 

relationship, the numbers will vary for each baby as 

shown in figure 1 (b), i.e. not all observed values fall 

on the straight line. "Error" as used in 

mathematical/statistical sense since 1726 is defined 

as “any deviation from accurate determination (or 

true value)” assuming that the accurate 

determination is obtainable7; see figure 1 (b), the 

distances from each of the observed values (y) 

collected from the study samples to its predicted 

value ( ) on the regression line. In order to find the 

best straight line that will represent the relationship 

between the two variables, the equation should be the 

one that gives the least “errors” of prediction.  

There are many ways to minimize the error of your 

guess (prediction), but the “least squares” method 

optimizes by minimizing squared error. According to 

Pearson’s approach, for linear regression if the slope 

is calculated from the least square method, then the 

observed x values predict the observed y values with 

the minimum possible sum of squared errors of 

prediction,  5.  The  slope  created  from  the  

 

Figure 1. Simple regression concept 
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least (minimum) errors is then considered as the best 

regression line with the best estimates of 0 and 1. 

This method is quite popular because it was 

comparatively easy to compute even manually to get 

the best guess for minimizing the squared error with 

the major assumption that the error is normally 

distributed8. 

Basics of Correlation 

The term correlation composes of ‘Co’ (together) and 

relation (connection) between two quantities2. 

“Correlation coefficient”, denoted by r. is measured on 

a scale that varies between +1 and -1. Complete 

correlation between two variables is expressed by 

either positive direction (+1) or negative direction (-1). 

Positive relationship occurs when one variable 

increases as the other increases; while negative 

relationship occurs when one decreases as the other 

increases. When there is no connection between the 

two variables, the correlation is 02,4. 

The Pearson’s correlation is calculated using 

statistics variance and covariance. Variance refers to 

the spread of data points around its mean, while a 

covariance refers to the measure of the directional 

relationship between two random variables11,12. 

Variance is the average of the squared deviations 

from the expected value (mean) for a single variable 

(x):  . The 

larger the variance means the data scatter widely and 

at large distance from the mean11. A covariance refers 

to the measure of how two random variables (x and y) 

will change when they are compared to each other. In 

other words, covariance is an average measure of the 

deviations from both means . 

A positive covariance means the two variables move 

upward or downward in the same direction at the 

same time, while a negative covariance means the 

values of the two variables move in opposite direction 

from each other. Note that covariance is the measure 

that indicates the direction, but not the degree of the 

movements of two variables11. 

Correlation coefficient is the comparison of covariance 

with the variances of the two variables. That 

is, . 
Figure 2 illustrates how correlations are calculated 

using this formula.  

Major assumptions of the Pearson correlation 

coefficient are: (1) both variables are normally 

distributed; (2) the sample  is  randomly  selected;  (3) 

(a) Perfect Positive Correlation 

 

(b) Perfect Negative Correlation 
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(c) Positive Correlation 

 
Figure 2. Calculation of Pearson Product Moment Correlations 

each pair of the observations are independent of one 

another; (4) two variables is linearly related4,12. Note 

that other types of correlation (e.g., Spearman 

correlation, Biserial correlation) slightly relax some of 

these assumptions.  Moreover, you should avoid 

common misconception stating that correlation 

implies causation. Actually correlation does not imply 

causation but it could be a pre-condition, but not 

necessary, for measuring causation12.  

Mathematical Link between Regression and 

Correlation 

Using the same data to calculate correlation and 

linear regression, you will get different statistics. 

Based on regression equation, you will get 1 which is 

the slope indicating association between x and y (i.e., 

when x changes one unit of x, y will change 1 unit of 

y). But correlation will give you the r which is the 

degree of linear association; r is simply a coefficient 

without unit attached. However, if you convert x and 

y to standard scores (Z-scores) and regress Zy from Zx, 

then 1 calculated from the least square method will 

be the same value as correlation r while 0 becomes 0. 

As shown in figure 3,1 the slope of Zx is equal to the 

correlation coefficient (r).  

As for a note about Z-score, the Z-score is the number 

of standard deviations from the mean where a data 

point is located [i.e., Z-score = ]. It is a 

measure of how many standard deviations below or 

above the population mean; it ranges from +3 

standard deviations on the normal distribution 

curve13. Z-score is a useful way to compare observed 

data collected from a “normal” population. With raw 

score data, the values and units sometimes may not 

be informative. For example, your exam score of 80 

from a total mark of 100 might sound good but where 

your position is when comparing your score to the 

average of the class is unknown; calculating your Z-

score [(your score of 80 – average score of the class) / 

SD of the class] can then tell you where you are, 

compared to the rest of the class. That is, the Z score 

tells you how many standard deviations from the 

mean to where your score is13. Z-score has no unit 

attached, so does correlation r.  

When you perform linear regression analysis, the 

model will quantify its goodness of fit with the 

coefficient of determination (r2) which will be the 

same number as the square of correlation coefficient 

(r). In fact, the concept behind r2 in linear regression 

is not quite the same as r from correlation analysis 

but interpretation of r2 is useful to consider, in both 

regression and correlation context. The r2 is a 

proportion (unlike r) as it is in effect measuring the 

proportion of explained/predicted variation compared 

to the total variation3. When all the observed 

variation is accounted for by the predicted portion 

(the line of best fit which is equivalent to perfect 

correlation), the r2 is 112.  

Many statistical models are based on correlation 

coefficient (r) among variables collected in the study. 

The interpretation of the r in those statistical models 

may not always be quantified as r2, the coefficient of 

determination for the goodness of fit of the model. 

However, it is possible to provide a readily 

understandable interpretation by using the square of 

the correlation as the determinant of best fit of 

regression model. A correlation of 0.5 could mean that 

only 25% of the variability is accounted for by the 

correlation model12. 
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Figure 3. Regression and correlation models 

Final Thought 

It is not overstated to say that both correlation and 

regression are the engines of statistical models. 

Several models (e.g., factor analysis, structural 

equation model, generalized linear models, etc.) are 

based on these two engines14-15. A historian of 

statistics, Stephen M. Stigler (1941-) calls them the 

“automobile” of statistical analysis, though he also 

stated that “... despite its limitations, occasional 

accidents, and incidental pollution, it and its 

numerous variations, extensions, and related 

conveyances carry the bulk of statistical analyses, 

and are known and valued by nearly all”8.  

Knowing your engines, now you are up to speed on 

your journey wisely. 
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