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Since “Statistics 101” course, we all learned that chi-

square (2) test is used when analyzing the 

association between exposure and outcome that are 

categorical variables, for examples: association 

between smoking (“smoke” vs. “not smoke”) and lung 

cancer (“yes” or “no”), or association between 

treatment (“Drug A” vs. “Drug B”) and treatment 

outcomes (“worsen”, “stable”, “improved”). Many 

might still remember that there are Pearson’s chi-
square test and Fisher’s exact test; and we would 

prefer to use Fisher’s exact test rather than Pearson’s 

chi-square when small “Expected Counts” are 

presented. So what do you “expect” in Pearson chi-

square or Fisher’s exact? 

Back to Basic of “Probability” 

When a teacher starts his/her statistic course, he/she 

will talk about tossing coins, rolling a dice, drawing 

cards out of a deck, and then “probability” theory. 

Many students start getting lost from there. But, in 

fact, it is not that difficult and it is the basic of most 

statistical methods. Let’s look at some terms.1-3 

“Probability” or “Probable” derives from Latin 

“Probabilis” which means plausible or generally 

approved. “Probability”, or another common term 

“Chance”, deals with the stochastic (random) 

processes which lie behind data or outcomes. It could 

be considered as a measure of how some events will 

likely occur; it is usually expressing as the proportion 

of the number of cases of interest happening among 

the whole number of cases possible, for example, "the 

probability that you will get number 3 face landing 

after rolling a dice is 1 in 6 (or 0.1666..) as each dice 

has six faces”.  

Probabilities may be calculated either as marginal, 

joint or conditional functions. Most statistical 

methods rely on this concept. Marginal probability, 

p(A), can be considered as an unconditional 

probability; that is, an event A that occurs is not 

conditioned on any other events. As an example in 

tossing an unbiased coin, the probability that a 

“Head” side will fall is unconditioned to chance that 

the “Tail” side will fall; thus p(head) = 1 in 2 (or 0.5). 

(The two sides of a coin are expressed as “Head” or 

“Tail” because head and tail has been historically 

considered as opposite body parts.) Joint probability, 

p(A and B) or p(A ∩ B), refers to the probability of 

event A and event B are occurring together; it is the 

likelihood of two independent events happening at 

the time frame of interest (of note, it could be the 

probability of the intersection of two or more events). 

But wait – there are conditions that we have to take 

into consideration here: (a) the events A and B must 

be able to happen within the certain time frame and 

(b) the events A and B must be independent of each 

other. As an example, tossing two coins at the same 

time is independent events as the outcome of tossing 

one coin has no influence on the outcome of tossing 

the other coin. With the independent events, we can 

use the joint probability formula to calculate a chance 

of getting the jointed outcome of interest by the 

simple formula: p(A ∩ B = p(A) x p(B). As shown in 

figure 1, in tossing two unbiased coins, the joint 

probability to get “Tail” and “Tail” of the two coins 

will be 0.25. 

Chi-square and “Expected Counts” 

Historically, Pearson's paper of 1900 introduced what 

subsequently became known as the chi-square test of 

goodness of fit. In series of tossing of ten shillings at a 

time “frequently in the open air”, Pearson's analysis 

of these artificial experiments led to the concept of 

“deviations from the most probable” or “a criterion of 

the probability”4.  

Let’s look at an example of a simple case of flipping a 

coin. If the coin is unbiased, meaning that it is fair 

and balanced, then the “most probable” or “expected” 

frequency of to get head is 0.5 or 50%. If we toss a 

coin 100 times and we get 45 or 55 heads, we may be 

not suspicious as the “deviations from the most 

probable” seems to be acceptable. But if only 31 heads 

occur in  100  flips,  we  would  be  now  skeptical  and  
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Example: If tossing two unbiased coins for 100 times, 

o Probability of getting “Tail” of Coin # 1 = (m2/N) = 50/100  = 0.5 
o Probability of getting “Tail” of Coin # 2 = (n2/N) = 50/100 = 0.5 
o Probability of getting “Tail” of Coin # 1 AND “Tail” of Coin # 2 = (m2/N) x (n2/N) = 0.5 x 0.5 = 0.25 

Thus, in tossing 100 times, one should get “Tail-Tail” for 

[(m2/ N) x (n/N) x N] = 0.25x100 = 25 times 

Figure 1. Outcomes of tossing two unbiased coins

suspect that the coin is somehow unfair or weighted 

to come up with tails. This is the concept of Pearson’s 

chi-square test, the test that compares the observed 

distribution of counts against the expected 

distribution from some theoretical baseline which 

allow us to quantify the probability of such an event5. 

The size of the difference between observed and 

expected distributions is reflected in the test statistic. 

The statistical null hypothesis is that the number of 

observed counts in each category is equal to that 

expected or predicted by a probability theory, and the 

alternative hypothesis is that the observed numbers 

are different from the expected. Then we will use a 

mathematical relationship, in this case the chi-square 

distribution, to estimate the probability of obtaining 

that value of the test statistic6-8. The chi-square test 

statistic is calculated by using the formula: 

 

where O represents the observed frequency (counts). 

E is the expected frequency (counts} under the null 

hypothesis. 

As an example of a study to determine association 

between exposure (E– vs. E+) and outcome (D– or D+), 

such as smoking (yes vs. no) and lung cancer ( yes or 

no), we can generate a 2x2 table as shown in figure 2. 

The observed counts (from data collection in the study) 

would be: a, b, c, d as shown in each category (cell). 

Then how we do get the expected counts? Back to our 

joint probability concept - if “exposure” and “outcome” 

are independent (not associated), then we can 

calculate the probability of the joint event in each cell. 

As shown in figure 2, the probability of “not exposed, 

E-” and “not having outcome, D-” can be calculated 

and then compared against its observed count, d. The 

chi-square test statistic is then based on the 

combination of Os and Es of all categories in the table. 

 Outcome 

D + D - Total 

Exposure 

E + a C m1 

E - c D m2 

Total n1 n2 N 
 

     Example:                                          

o Observed value = cases that not being exposed (E-) AND 
not having outcome (D-) among N people = d 

o Expected value = (Prob. of being not exposed, E-) AND 
(Prob..of not having outcome, D-) of N people  
= (m2/N) x (n2/N) x N 

Figure 2. Observed and expected frequencies (counts)  

in a 2x2 table 

The chi-square statistic is a non-parametric 

(distribution free); that means it is robust with 

respect to the distribution of the data. Specifically, it 

does not require equality of variances among the 

study groups or homoscedasticity in the data9. Chi-

square test can be used for both dichotomous 

independent variables (a shown in 2x2 table above) 

and multiple groups/outcomes. However, the chi-

square test does not provide an exact calculation of 

the p-value but rather an approximation of the p-

value. But no need to worry - when the assumptions 

of the test are met, it is like all probability density 

functions, the chi-square distribution is a continuous 

function whose area sums to one5. Just a note for the 

reader who is interested in mathematical foundation, 

the chi-square distribution is based on the summing 

of the square values of k standard normal 

distributions, whereas k is corresponding to the 

degrees of freedom for the chi-square distribution. 

Degree of freedom for chi-square is equal to (r-1)x(c-1), 
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where r is the number of levels of one categorical 

variable and c is the number of levels of another 

categorical variable. As shown in figure 3, the 

observed counts vs. expected counts in the 2x2 table 

(4 cells) were compared in Pearson’s chi-square test 

statistic and the p-value was calculated basing on chi-

square distribution. The degree of freedom as shown 

next to the chi-square is 1, chi2(1), because we have 2 

levels of exposure and 2 levels of outcome. Based on 

the p-value, we can then conclude that there is 

statistically significant association between exposure 

(infection at ICU admission) and outcome (vital 

status).  

 

Figure 3. Person’s Chi-square test based in observed and expected frequencies

Karl Pearson vs. Ronald A. Fisher  

It is not a strange phenomenon to see a scientific 

controversy debating on certain issue publicly and 

privately. In 1935, Karl Pearson and R. A. Fisher 

exchanged hot letters in Nature, one of the most 

prestigious scientific journals, on testing statistical 

hypotheses. The disagreements and rivalry between 

Ronald A Fisher and Karl Pearson were also noted in 

history in many other statistical theories; after dying 

of Karl Pearson, Fisher even continued to argue with 

Ergon Pearson (Karl Pearson’s son) and Jerzy 

Neyman on this hypothesis testing concept10,11. In fact, 

there has been another debate on philosophy of 

hypothesis testing from Bayesian approach which is 

based on stronger assumptions10. This is fun to read 

but it is beyond the purpose of this article.   

Fisher argued that in all cases of applying the chi-

square test it is mathematically necessary to take 

account of the number of degrees of freedom of the 

observations in relation to the expected distribution 

to which they are compared12. Fisher then developed 

the “Exact” test which means that we can calculate 

from the marginal totals and get exactly what is the 

probability of getting an observed result, in the same 

way that we can work out exactly the chance that we 

may get 55 heads out of 100 tosses of an unbiased 

coin. However, the method and formula for Fisher’s 

exact test is not easy to write up; it is based on the 

"factorial" or successive multiplication by numbers in 

descending series13. 

It was suggested in literature that the Pearson’s chi-

square test involves using the chi-square distribution 

to approximate the underlying exact distribution. The 

main assumptions for Pearson’s chi-square test 

include: (a) individual observations are independent 

of each other, and (b) individual cells contain 

sufficient counts. The approximation becomes better 

as the expected cell counts grow larger, and may be 

inappropriate for tables with very small expected cell 

counts14. There are many recommendations about the 

sufficient counts5,14,15. A standard (and conservative) 

rule of thumb is to avoid using the Pearson’s chi-

square test statistics for tables with expected cell 

counts <1, or when more than 20% of the table cells 

have expected cell counts <5. Another rule of thumb 

is that if the total number of observations is at least 

10, the number categories is at least 3, and the 

square of the total number of observations is at least 

10 times the number of categories, then the Pearson’s 

chi-square approximation should be reasonable. 

Caution should be made when cell categories are 

combined (collapsed together) to fix problems of small 

expected cell frequencies as it may destroy evidence of 

non-independence14.  

So – when to use Fisher’s exact test? According to the 

common rule of thumb, we should use Fisher’s exact 

test when the Pearson’s chi-square test is 

inappropriate due to small sample sizes and expected 

counts in the 20% of the table cells are <5 (for the 2x2 

table, when the expected value in a cell is <5)15. Note 

that for some statistical software, Fisher’s exact test 

is applied to only 2x2 table; but there are extensions 

that allow the test to be applied to cases with more 

than two categories per variable.5 
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As examples shown in figure 4, the decision to report 

p-value of Pearson’s chi-square or Fisher exact test 

would generally be based on the expected counts in 

the table cells. In the scenario shown in example 2 

representing the association between the exposure 

(type of ICU admission) and the outcome (vital 

status), the cell of “elective admission” and “died” 

contains 2 observed cases but 10.6 expected counts; 

the p-value of Pearson’s chi-square test is thus 

applicable. In contrast, in the scenario shown in 

example 3 representing the association between the 

exposure (CPR prior to ICU admission) and the 

outcome (vital status), the cell of “having CPR” and 

“died” contains 7 observed cases but 2.6 expected 

counts; the p-value of Fisher’s exact test is more 

appropriate. 

 

                   

Figure 4. Person’s Chi-square test vs. Fisher’s Exact Test

It should be noted that the Pearson’s chi-square test 

would be more close to Fisher’s exact test as the 

number of observations increases. As its name 

implies, Fisher's exact test gives an exact probability 

for all sample sizes. So, why don’t we just use Fisher’s 

exact test for all, and not using Pearson’s chi-square 

at all? This is back to the debatable issue - some 

statisticians would argue that Fisher's exact test may 

give the exact answer to the wrong question and the 

test itself is based on experimental study with the 

assumption that the row and column totals are fixed, 

which is not quite fit to many other kinds of study14. 

In fact, there is another controversial idea against 

Pearson’s chi-square test. That is the Yates's 

correction for continuity (or Yates's chi-square test) 

which was designed to make the Pearson’s chi-square 

approximation better. However, many argued that it 

may adjust too far making the p-value too large (too 

'conservative') and thus its use is limited. Moreover, 

with large sample sizes, Yates' correction makes little 

difference. Again, there were statisticians who agree 

and disagree on whether to use Yates’s correction16. 

Conclusion 

The chi-square test is the most well-known statistics 

used to test the agreement between observed and 

expected counts while the probability to reject the 

null hypothesis is calculated based on the theoretical 

chi-square distribution. The hot arguments regarding 

the use and misuse of chi-square tests came from 

different schools of thought in the assumptions and 

applications of hypothesis testing10,11,17. Despite 

different approaches, there have also been studies 

suggesting that Fisher's exact and Pearson's chi-

square tests are “asymptotically equivalent” (the 

statistics term meaning that the two tests are 

eventually becoming “essentially equal") and a formal 

similarity also exists in small samples18. In fact, 

Pearson's chi-square test even gave an excellent 

approximation to the actual Bayesian probability 

approach except for those with extremely 

disproportionate marginal frequencies18. So – the 

common practice among researchers to use Pearson’s 

chi-square test or Fisher’s exact test is still based 

main assumption – the sufficient “expected” counts! 
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